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This paper reports the results of over 130 auctions conducted under controlled
conditions to examine the robustness of several auction mechanisms to allocate
multiple objects. The simultaneous discrete auction process used by the Federal
Communications Commission to allocate Personal Communications licenses
was contrasted with a sequential auction and a combinatorial auction over a
variety of demand conditions. In test environments created to check only the
minimum competency of the procedures, the simultaneous discrete auction
process produces highly efficient allocations, approaching levels similar to
those found with a continuous form of the auction, and it outperforms a sequen-
tial auction. However, in environments created to stress test the procedures,
a combinatorial auction outperforms the simultaneous discrete auction.

1. Introduction

During the discussion and evaluation of proposals for the design of
the Federal Communications Commission (FCC) mechanism to sell the
spectrum, over 130 auctions were run under controlled conditions at
Caltech for the National Telecommunications and Information Admin-
istration (NTIA), the FCC, and others.1 While these data were used in
those debates, we do not intend to relive that process here. Instead, in
this paper, we reexamine these data and try to extract some useful
information for those who may, in the future, be involved in the diffi-
cult task of creating mechanisms to auction multiple items.

1. Some of the trials and the data generated are described in a report to the FCC.
See Ledyard et al. (1994). For a discussion of the role of experimentation in the FCC
design process, see Plott (1996). We would like to thank Robin Hanson for his design of
the spatial environments.

q 1997 Massachusetts Institute of Technology.
Journal of Economics & Management Strategy, Volume 6, Number 3, Fall 1997, 639–675
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The two major design questions we can say something about
are (1) should the items be auctioned off sequentially or simultane-
ously? and (2) should package bidding be allowed? Our main conclu-
sion is that, over a very wide range of environments, package bidding
mechanisms (weakly) dominate simultaneous mechanisms, which in
turn (weakly) dominate sequential mechanisms. This conclusion is
based on three observations derived from a close look at the
data.

First, in environments with multiple items to be allocated, if those
items are homogeneous and substitutes, then little coordination be-
tween buyers is needed and the only role of the mechanism is to sort
bidders with high values from bidders with low values. Both the se-
quential and simultaneous mechanisms seem to work very well at find-
ing efficient allocations in these ‘‘easy’’ environments.

Second, in environments with multiple items to be allocated, if
those items are heterogeneous, then some coordination among bidders
is necessary to achieve high-value allocations even if there are only
low synergy values. Simultaneous auctions provide a first step at this
coordination that sequential auctions might have difficulty in pro-
viding.

Third, in environments with heterogeneous goods exhibiting
complementarities, significant coordination is required for an auction
or allocation mechanism to perform well with respect to efficiency or
revenue. Sequential auctions perform poorly. Simultaneity is clearly
necessary but not sufficient to attain high efficiencies. The simultane-
ous, one-price-per-item auction tends to produce outcomes that are
either high in efficiency, revenue, and losses or low in efficiency, reve-
nue, and losses. Package bidding seems to help a lot in systematically
attaining high efficiency, high revenue, and no losses.

In the rest of this paper we explain and detail the collection of
experiments. In Section 2, we provide information on the environments
covered, the mechanisms tested, and the performance measures used.
In Section 3, we describe the data and our findings. In Section 4, we
address some of the questions and issues left unanswered by these
data.

Because we expect that many readers may not have a background
in the methodology of applied mechanism design, we have included
a brief introduction in an appendix. Policy makers and theorists inter-
ested in applying the results in this paper should read Section A.1
carefully.
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2. What Did We Do?

During the actual FCC design process, a wide range of questions were
continuously thrown at the experimentalists who were trying to pro-
vide insights and data, as fast as possible, about situations for which
theory had virtually nothing to say. Whenever the experimentalists
found a problem with a current manifestation of the proposed designs,
new proposed solutions were immediately put forward. No careful
theoretical analysis or experimental design was followed, nor could
one be, given the urgency of the situation. Nevertheless, we think that
the experiments that were done can be organized in a reasonably coher-
ent fashion and that, while they do not cover the entire territory one
may wish they had, some fairly straightforward conclusions can be
drawn for future designs.

2.1 Questions and Method

There were two major design questions with respect to the auction
rules about which the data we have reveal some information:

1. Should the items be auctioned off sequentially or simultaneously?2

2. Should package bidding be allowed?

There were other issues that achieved some relative importance
at various times during the design process but for which there still is
neither any convincing theory nor enough experimental evidence on
which to base a judgment. Should there be a withdrawal rule or not,
and if so, in what form?3 What should be the appropriate stopping
rule? Should activity rules be required, and if so, what should they be?
How many waivers should be allowed? While there are some data that
might provide light, we feel that more experiments and theory are
needed before anything conclusive can be said, and so we will not
address these secondary questions in this paper.

Experimental methods in economics provide a type of ‘‘wind tun-

2. A hybrid design was also considered, which involved comparing the results of a
simultaneous sealed bid of all items and a sequential open outcry auction of each item.
See Plott (1997) for a description of the process and data on its comparative performance.
Milgrom (1995) also has a description of this proposal. We do not cover that design here.

3. There were data and theory on one proposed rule, to allow withdrawal at any
time for free. These suggested that such a rule would destabilize the auction and produce
low efficiencies in the allocation and low revenue. [See, for example, Banks et al. (1989)
and Milgrom (1995).] The rule was eventually eliminated from further consideration.
Porter (1996) provides an experimental analysis of the withdrawal rule currently used
in the FCC auction and finds that there is a positive relationship between individual
losses and allocative efficiency when the rule is imposed.
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nel’’ within which to test mechanism designs. These tests can be a
valuable source of scientific information that one can use to determine
the likely performance of new mechanisms in new environments. The
process is simple and very similar to the testing of airfoils in wind
tunnels or the testing of hull shapes in towing tanks. One first simulates
the environment, in our case by inducing the constellation of partici-
pants’ valuations and the information they each have about these valua-
tions. Then a mechanism is provided and allowed to operate within
the testbed environment. Performance is measured. With enough varia-
tion in the environments and enough variation in the mechanisms, one
can begin to reach some conclusions about details in design that affect
performance. Hunches and arguments loosely based on inappropriate
theory can be replaced by facts.

Testbed experiments can be a valuable source of data about the
performance of newly designed mechanisms for which there are no
examples in operation. As an illustration, see Ledyard et al. (1994b) for
the research that led to the Cassini trading mechanism—a bulletin-
board trading system now in use as a project management device in
the design and construction of the Cassini spacecraft for a mission to
Saturn.4 It may well have been the very first active mechanism for
trading worldwide over the Internet. For other illustrations, see Plott
(1994). As with any evidence, including theory, testbed data must be
weighed carefully. But if used intelligently they can eliminate bad de-
signs, provide comparative performance data, and actually help a deci-
sionmaker come to good conclusions during the design process.

2.2 The Economic Environments We Used5

All of the economic environments reported in this paper are derived
from the following generic setup. A set of n objects, labeled x1,...,xn,
are to be allocated to m agents. Agent i’s profit function is Vi (x1i ,....,xni)
where xki 4 1 if and only if agent i is awarded item k. Thus, an agent
knows what they will be paid if they successfully acquire any particular
subset of the items. In some cases below, agents will be assumed to
have common knowledge about aspects of others’ values. In other cases
agents will know nothing a priori except their own valuations. In creat-

4. Another mechanism that is successfully running in practice and that was developed
with the aid of laboratory testbeds is the ACE market. ACE is now operating in Los
Angeles at least four times per year as a call market for trading emissions credits—a
very complex process. Those interested in the details can go to the WorldWideWeb page
at www.ace-mkt.com, which includes a link to download the client software.

5. More details can be found in the Appendix, Section A.3.

http://www.ace-mkt.com
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ing this generic setup, we realized we were abstracting from correlated
and asymmetric information. We did so, not because we thought such
information was unimportant, but because we wanted to concentrate
the limited resources we had on the performance of the proposed auc-
tions when problems such as the winner’s curse were absent. In the
presence of those problems some fundamental performance properties
might have been either obscured or exacerbated. This abstraction is, of
course, a defect of the existing research that can and should be corrected
in future work.

In this class of environments the most efficient allocations solve
the problem

max
x

O
i

Vi(x1i , . . . , xni)

subject to

xji 4 0 or 1,

O
j

xji 4 1 for each i.

For purposes of reporting the test results, we split the environ-
ments we used into three somewhat arbitrary classes. The first, which
we refer to as easy, involve constellations of values for which no reason-
able mechanism should have any problems achieving efficient alloca-
tions. If a proposed mechanism had failed to perform well in these
situations, one would have been fairly sure that it would also fail to
perform in more complicated environments. One can think of these as
minimal competency tests. These environments have at least two fea-
tures that make the allocation problem easy for a mechanism: there are
no significant coordination issues that require the mechanism to fit
complementary demands together, and there is a competitive equilib-
rium (CE) price vector with one price per item that is sufficient to
support the 100%-efficient allocation.

2.2.1 Easy Environments. The first easy class of environ-
ments used is one in which values are additive, i.e., the value function
is of the form Vi(x1i , . . . , xni) 4 O j

Vi(xji). In the experiments, there
were six items for sale to six demanders. Each demander knew that
his value and those of other participants were to be drawn uniformly,
with replacement, from a fixed list of ten value sheets.6

A second easy class of environments used had items that were

6. More details can be found in the Appendix, Section A.3.
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homogenous andhad decreasing marginal values, i.e.,Vi(x1i , . . . , xni)4
Vi( O j

xji) with V ¢i( O j
xji) , 0. In the experiments, there were eight par-

ticipants and ten units to be allocated. Each participant had decreasing
demands for up to four units. In addition, subjects knew the number
of units being auctioned, the number of participants, and who bid on
what items; however, they did not know the distribution over which
values were drawn.

The final easy class of environments we used was one in which
items were homogenous but had increasing marginal values (super-
additive values), i.e. V ¢i( O j

xji) . 0. We also constructed the value func-
tions so that a competitive equilibrium price existed. In the experiment,
there were eight participants and ten units to be allocated. Each partici-
pant had increasing demands for up to as many as four units. Subjects
knew the number of units being auctioned, the number of participants,
and who bid on what items. However, subjects did not know the distri-
bution over which values were drawn or even if a single price would
clear the market.

2.2.2 Moderate Environments. The second sets of values we
consider are cases in which the degree of difficulty for mechanisms is
raised a bit. We consider this a move towards the actual possibilities.
We introduce heterogeneity into the environment. We believe, and the
data support, that heterogeneity can significantly increase the difficulty
any auction design has producing efficient allocations. By effectively
increasing the dimension of the commodity space from one to n, prices
must now not only separate high-value bidders from low-value bid-
ders; prices must also coordinate the demands of bidders across com-
modities. Prices in one market affect the demands in another, and gen-
eral equilibrium phenomena become important. Theory and data and
intuition from environments with homogenous objects are not suffi-
cient background for analyzing environments with heterogeneity.

The first moderate environment we used was similar to the easy
superadditive case described above, except that values were selected
so that there did not exist a single market clearing price for the items.
So unless the mechanism can produce nonlinear pricing, either the out-
come must result in losses to at least one bidder, or some participant
must forgo the pursuit of potentially profitable opportunities. As in
the easy superadditive case, subjects knew the number of units being
auctioned, the number of participants, and who bid on what items.
However, subjects did not know the distribution over which values
were drawn or if a single price could clear the market.

The second moderate environment we used was the assignment
problem that incorporates heterogeneity but allows buyers to redeem
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one and only one item. The mechanism is presented with a coordination
problem that has features of what might happen if bidders had budgets.
The individual payoff in an assignment environment is given by

Vi(x1i , . . . , xni) 4 O n
j

Vi(xji) × u ji ,

u ji [ $ 0, 1} and O
n

j

u ji 4 1.

The only problem facing the mechanism is the coordination of the de-
manders. In the experiments, there were six items for sale to six deman-
ders. Each demander knew that his value and those of other partici-
pants were to be drawn uniformly, with replacement, from a fixed list
of ten value sheets (see Appendix, Sec. A.3, for more details).

The final moderate environment we used was one in which indi-
viduals value the heterogeneous items offered more in groups than
singly. That is, for some items and some agents, preferences may have
the property that V( $ a,b}) . V( $ a}) ` V( $ b}). This structure of prefer-
ence is often characterized as possessing ‘‘complements’’ or ‘‘syner-
gies.’’ The theory that guided the creation of these testbed environ-
ments can be found in Bykowsky et al. (1995). These experiments cover
a variety of cases in which the mechanism must coordinate the bidders
and guide them to best fit together. In some of the cases those trying
to assemble packages can be exposed to losses if they try to build a
particular package but are eventually outbid for a piece of it.

A constellation of values with this potential risk can be seen in
the environment provided in Table I. There, three subjects are compet-
ing for three heterogeneous items (a, b, and c ) with the values listed.
Subject 1 has the highest value for each of the items. However, subjects

TABLE I.

Simple Fitting Environment

Values

Packages Subject 1 Subject 2 Subject 3

a 2 2 4
b 2 4 2
c 4 2 2
ab 23 24 27
bc 24 27 24
ac 27 23 23
abc 42 32 32
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2 and 3 have high values for packages that overlap at item b. It is easy
to see that there are no competitive equilibrium prices for this case.
We also included some constellations of values with synergies and for
which a simple competitive equilibrium existed.7

Subjects knew the number of units being auctioned and the num-
ber of participants and who bid on what items. However, subjects did
not know the distribution over which package values were drawn.

2.2.3 Hard Environments. Finally we turn to three classes of
environments that were intentionally constructed to test the limits and
robustness of each of the mechanisms. In these environments value
synergies over specific packages of items (spatial demands) are pre-
dominant. This forces bidders to coordinate their bids to find the high-
est-value fit among packages of items.

The first hard environment we used had three items and three
demanders. Each demander had values for single items and also a
synergy value for all three items. The values of bidders were deter-
mined as follows:

1. The integer values for the single items were drawn independently
from a triangular distribution with support [0,98].

2. The value for the three-item package was determined by adding a
number randomly selected from the interval [0,149] to the highest
value for item a, b, or c drawn in step 1.

The efficient outcome can have either the entire set of items going to
one demander or one item going to each demander. This class of envi-
ronments was designed to contrast the interests of a user who wants
a major package with the interests of some single-item bidders. We
created this environment after hearing many suggestions in the policy
analysis of the FCC auction design that package bidding would bias
the results in favor of those wanting many items. We thought it impor-
tant to study that unsubstantiated claim and, in doing so, to give that
argument its best chance. Subjects in this experiment knew the distribu-
tion from which the values were drawn.

The second hard environment we used had five bidders and six

7. At the time we thought that the performance of some of the proposed auctions
would differ according to whether a competitive equilibrium existed or not. As it turns
out, that conjecture was shown to be wrong by the data, and so we have reported the
data from both situations together.
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TABLE II.

Values in a Spatial Fitting Example

Bidder 1 Packages: f cd bcf bde abe
Values: 9 22 128 130 120

Bidder 2 Packages: b df ae af abd a

Values: 8 28 24 27 130
Bidder 3 Packages: c a d bd abf

Values: 2 3 8 20 119
Bidder 4 Packages: e abc adf bdf aef

Values: 10 117 112 128 125
Bidder 5 Packages: cf de cefa bef abcdef

Values: 29 25 117 125 142

a Optimal fit.

items (a, b, c, d, e, and f ) to be allocated. Table II shows the nature of
the problem faced by an allocation mechanism. Bidders 2 and 5 have
three-item packages that exactly fit together and have the highest possi-
ble value of any combination of packages. The problem is that every
one has high-value, three-item packages, all of which overlap. The task
of the mechanism is to guide the owners of the components of the
optimal allocation to find each other. This environment was created to
give package bidding its best chance. The distribution over which the
values were drawn was given as common information to subjects in
this experiment.

The third hard environment used was designed to investigate the
boundary case described in Banks et al. (1989) in which multidimen-
sional demands of lumpy sizes must fit into a box with fixed dimen-
sions (a network problem). This environment involves values in which
bidders receive payoffs only for packages that are highly interrelated
and must fit with the packages of other similar demanders. In particu-
lar, there were two resources with fixed supply of 20 units each. Each
subject had nine two-dimensional packages of the fixed resources they
could select from, for which they would receive value.

2.3 Allocation Mechanisms Tested

Into these multifaceted environments we threw three mechanisms: a
sequential ascending-bid auction, a simultaneous ascending-bid batch
auction, and a continuous package bidding auction. The mechanism
designs were taken from the early debates in the winter of 1993 over
which mechanism the FCC could or should use to allocate PCS spec-
trum. The debate dealt primarily with the allocative efficiency of the
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mechanisms and their revenue-generating properties. We describe
below each of the mechanisms as we implemented them in the various
testbeds.

2.3.1 The Sequential Ascending-Bid Auction. As its
name implies, the sequential auction mechanism allocates one unit at
a time in some sequential order. The method used in the laboratory
testbed was to auction them off in random order. All participants knew,
before the bidding began, the order in which the units would be auc-
tioned off. Each unit was allocated using an ascending-oral-bid auction.
Of all the mechanisms we tested, this was clearly the easiest to imple-
ment.

2.3.2 The Simultaneous Ascending-Bid Batch Auc-
tion. This mechanism operates across of a series of rounds. Once
each round, individuals submit a sealed bid on each of as many items
as they wish. After a round closes, the highest bid submitted for each
item, the standing bid, is identified and displayed along with all other
bids submitted. An allocation is made when bidding stops.

2.3.2.1 Activity and Update Rules. In order to be able to submit a bid
in the round, a participant must have been active in the previous round.
To be active a participant must have submitted an acceptable bid in
the previous round or have had the standing bid two rounds back.8 In
order for a bid to be acceptable in a round, it had to be at least 10%
higher than the standing bid for the item.

A second-stage activity rule was imposed if the auction did not close
before round 8.9 This rule restricted the number of items for which a
participant could bid in a round. The restriction was that a participant
could bid for at most a total number of items equal to (1) the number
of acceptable bids placed in the previous round for items for which the
participant did not have the standing bid for the item, plus (2) the
number of items for which the participant had the standing bid two
rounds back but no longer had the standing bid. In addition, the partici-
pant could always bid on those items for which he currently had the
standing bid.

8. In some experiments participants were provided with two waivers that they could
use to stay active. The original purpose of the waivers was to ensure that a bidder with
logistical problems in entering a bid was not penalized. In our experiments logistical
problems were not an issue. Still, over half of the allotted waivers were used by partici-
pants, presumably for strategic reasons.

9. In the spatial environment the second-stage activity rule was not used.
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These activity rules are exactly those that were employed in the
FCC’s auction for nationwide narrowband PCS licenses.

2.3.2.2 Withdrawal Rule. A withdrawal rule allowed participants to
delete any of their standing bids before a round began. After such a
withdrawal, the price of that item was dropped to zero and that bid
became the standing bid of the experimenter. An individual who with-
drew his bid paid a penalty equal to the maximum of the difference
between the amount of the bid he withdrew and the highest bid submit-
ted after his withdrawal, and zero.10

2.3.2.3 Stopping, Pricing, and Allocation Rule. The simultaneous as-
cending-bid batch auction stopped if no acceptable bids were submitted
in a round or if the process reached some round after round 13. In
the latter case, the actual round the process was to be stopped at was
announced two rounds ahead of time.11 When the process stopped, the
items were awarded to the participants with the standing bids in that
round. Withdrawal penalties were also calculated at this time.

2.3.3 The Package Bidding Mechanism. This is the AUSM
mechanism described in Banks et al. (1989).12 It is similar to the continu-
ous ascending-bid auction13 but with two special features. First, partici-
pants are allowed, but not required, to submit bids for packages of items
as well as for individual items.14 That is, they can say ‘‘I am willing to

10. In the spatial environments, a slightly different withdrawal rule was used. In
those experiments, one could withdraw all of one’s bids when the auction stopped. The
withdrawn items were then offered in a random but sequential order to the next highest
bidder on that item. This was an early idea put forward by some for the FCC auction
design.

11. In the spatial environments a hard stop rule was not used. Instead, the mechanism
was allowed to run its course. That is, the auction stopped and all markets closed simul-
taneously if and only if no new bids were entered in a round. This was the stopping
rule eventually chosen by the FCC.

12. Other references with details about AUSM include Ledyard et al. (1996) and
Bykowsky et al. (1995).

13. AUSM can and has been run as a batch process. This requires that an optimization
routine be run after each round, but with modern computers and software and with
economic incentives driving the structure of the bids, there have been no computational
problems in practice.

14. There seems to be a widely held misperception that AUSM and related package
bidding mechanisms require that each bidder submit a bid for every possible package
or 2n bids. This is wrong. Just as in the simultaneous ascending-bid auction, bidders
need only bid on those items they truly want and think they have a chance of winning.
In fact, if package bidding is allowed, in equilibrium fewer bids are needed to support
an efficient allocation than in the simultaneous ascending-bid auction. Data from testbeds
and from real-world use suggest that package bidding generates no more serious bids
per person than any other mechanism and, indeed, may actually generate fewer.
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pay $100 for the package $ a, b, c}’’ and not have to identify a separate
bid for each item. With such a bid, they are requesting to be allocated
a and charged $100 if and only if they are also allocated b and c. This
bid is accepted if and only if $100 is more than the sum of the standing
bids for the packages that contain a, b, and c. So, for example, if there
is a standing bid of $35 for a, a standing bid of $50 for b, and a standing
bid of $5 for c, then the bid of $100 for $ a, b, c} wins. If, however, a
bid of $75 for $ b, c} is made before the bid of $100 for $ a, b, c} is
submitted, then the standing bids are the bid for a and the bid for
$ b, c}. The $100 bid for $ a, b, c} is then no longer large enough to
become a standing bid. It would need to be greater than $110. Because
it can sometimes take several small package bids to displace a large
package bid, a second special feature of the continuous AUSM mecha-
nism15 is a bulletin board on which bidders can post small bids that
are not large enough to displace a current winner but that might be
part of a collection of bids that would be large enough. This standby
queue of bids is always available for bidders to combine with to dis-
place a large package bid.

2.4 Summary of Procedures

All of the experiments were conducted at the California Institute of
Technology using the student population as the subject pool. All of the
mechanisms, other than the sequential auction, were computerized. For
the AUSM and simultaneous batch auctions, experienced subjects were
used who had three hours of training in the rules of the mechanisms
and software. In Table III are listed the relevant information for each
of the experimental sessions.

3. What Did We Find?

We present the results in three parts. First, we provide a brief summary
of the measured performance, both efficiency and revenue, of the mech-
anisms in the various testbed environments. Second, we look more
closely at some results from the hard testbeds, the ones designed to
stress the limits of the mechanisms. Finally, we present some observa-
tions based on our reading of the totality of the evidence. We also
answer the two design questions raised in Section 2.

15. When AUSM is run in the batch format, this feature is not necessary, because
every bid is processed simultaneously. Even when it is available, it is rarely used. See
Kwasnica et al. (1997) for a comparison of a batch AUSM mechanism with a continuous
AUSM mechanism.
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TABLE III.

Experimental Design

Number of
Experimental

Mechanism Environment Sessions Subjects Comments

Sequential Additive 1a Inexperienced
Decreasing 1a Inexperienced Conducted at end
Assignment 2a Inexperienced of simultaneous
Spatial fitting 2b Experienced sessions

Simultaneous Additive 1c Experienced
batch Decreasing 4c Experienced

Superadditive CEd 4c Experienced Fixed ending
Superadditive 5c Experienced round used

without CE
Assignment 2c Experienced
Fitting 3c Experienced No second stage

and no fixed
ending round

Spatial 4c Experienced As above;
Spatial fitting 3c Experienced withdrawal at

end only
Network 1a Experienced No withdrawal

AUSM Fitting 2a Experienced
Spatial 5b Experienced Standby queue
Spatial fitting 4b Experienced used
Network 2a Experienced

a David Porter designed and conducted these experiments.
b Robin Hanson and David Porter designed and conducted these experiments.
c Antonio Rangel, David Porter, and John Ledyard designed and/or conducted these experiments.
d Competitive equilibrium.

In organizing the data, we use three standard performance mea-
sures: efficiency, revenue, and bidders’ surplus.16Since we are working
in environments in which value is measured in terms of profit, we
measure efficiency in the usual way as the aggregate value achieved
by the mechanism as a percentage of the maximum possible. It has been
correctly pointed out by some that the absolute value of this measure
is not particularly illuminating.17 However, comparing values across
mechanisms in the same environments can be informative. For exam-

16. We of course also look at other dimensions of interest. Of particular interest in
the debate about package bidding is the extent to which a mechanism biases the outcomes
in favor of bidders who only want a small number of items as opposed to those who
get high value from large packages.

17. In the Appendix, Section A.2, we expand and explain this problem.
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ple, if I were to tell you that mechanism M1 produced observed efficien-
cies between 90% and 96% and that mechanism M2 produced efficien-
cies between 86% and 89%, for the same structure of payments, you
would be justified in concluding that M1 outperformed M2 on that
class of environments with respect to attaining efficient allocations. We
provide such comparative data below.

Our second measure of performance, revenue, is simply the num-
ber of dollars collected from the participants in payment for the items.
Again the absolute numbers do not necessarily provide any guidance
for the designer. The usual solution is to use revenue as a percentage
of the predicted market equilibrium prices. Unfortunately, in some of
the environments we report on below, no such prices exist. So, in our
analysis, we will use revenue as a percentage of the maximum value
attainable. Again, it is the relative values of revenue collected across
mechanisms in the same environments that can be informative.

Finally, because it is a measure of the user’s gains from participa-
tion and because it can serve as an explanation for why some potential
participants argued for particular designs, we include data on bidders’
surplus. In this case, this is simply the difference between the value
attained and the revenue paid. Bidders’ surplus as a percentage of the
maximum value attainable is thus simply the difference between the
efficiency and revenue percentages.

3.1 Basic Performance—Efficiency and Revenue

3.1.1 Easy Environments. In Figures 1 and 2 are plotted the
efficiency and revenue percentages achieved by the mechanisms tested
in environments with additive values, with decreasing returns, and
with increasing returns with competitive equilibria. These data confirm
our prior intuition that all of the mechanisms would do well in such
unchallenging situations. The variation observed in the performance
of the batch process, relative to what would be efficient, should be
expected in light of the requirement that bids increase by at least 10%
in each round.

3.1.2 Moderate Environments. In Figure 3 and 4 are the data
from the tests in which the mechanisms were exposed to moderately
more difficult parametric conditions. These were one with homogene-
ous goods with increasing marginal values and no competitive equilib-
rium, the assignment problem, and a simple fitting problem.

The mechanisms now begin to separate themselves. The simul-
taneous mechanisms do a better job of finding efficient allocations and
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FIGURE 1. MECHANISM EFFICIENCY—EASY ENVIRONMENTS

FIGURE 2. MECHANISM REVENUE—EASY ENVIRONMENTS
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FIGURE 3. MECHANISM EFFICIENCY—MODERATE
ENVIRONMENTS

FIGURE 4. MECHANISM REVENUE—MODERATE
ENVIRONMENTS
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FIGURE 5. MECHANISM EFFICIENCY—HARD ENVIRONMENTS

produce more revenue than the sequential mechanism. However, rela-
tive to the easy environments, both the simultaneous and sequential
auctions now exhibit some losses in efficiency. The packaging mecha-
nism seems to work very well in the simple fitting environment. One
finding of some interest is that, in the simple fitting case, the revenue
produced by the simultaneous auction can actually exceed the maxi-
mum value of the final allocation. This means that one or more of the
bidders has sustained significant losses—has paid more for the items
won than they are actually worth to that bidder. This is not a winners’-
curse phenomenon: remember that there is no correlated information.
It is the result of using an inappropriate mechanism in an environment
with complementarities among heterogeneous items.18

3.1.3 Hard Environments. In Figure 5 and 6 are the data from
the testbeds that used the most difficult coordination environments.
These data are perhaps the most revealing about the relative perfor-
mance capabilities of each mechanism. Stress tests often highlight
strengths and weaknesses missed under more normal conditions.

The results seem very clear from these figures. First, without pack-
age bidding, there are major losses in allocative efficiency. Thus, it

18. See Bykowsky et al. (1995) for how this might happen.
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FIGURE 6. MECHANISM REVENUE—HARD ENVIRONMENTS

appears that simultaneous auction processes are necessary but not suf-
ficient to coordinatedemanders. A simultaneous auction does eliminate
single-item efficiencies. But in complex environments with nonconvexi-
ties arising from heterogeneous spatial returns to scale, one price per
item is simply not enough information to guide bidders to efficient
allocations.19 Opportunities for economies of scale, scope, and fit are
easily missed. Allowing bids for packages leads to improvements in
efficiencies and revenue, and losses are controlled. Efficiencies are im-
proved because bidders can find and bid on those packages with signifi-
cant complementarities without bearing the risk of losing part of that
package. Revenue is improved for the same reason.20 However, the
gain in efficiency and revenue from allowing package bidding appears

19. The theory behind this observation can be found in Calsamiglia (1977), Jordan
(1987), and Mount and Reiter (1996).

20. In ascending-bid auctions, winning prices are driven by the values of the second-
best allocations, since winners must bid enough to ration the losers out. With packaging,
the second-best allocations can be more easily found and bid, and, with synergies, these
are worth more than the sum of the values of the single-item allocations. Thus package
bidding generally yields higher revenue without losses.
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FIGURE 7. DISTRIBUTION OF BIDDER SURPLUS

to come at some expense to bidders’ surplus. In Figure 7 are displayed
the distribution of bidders’ surplus (net profit)21 as a percent of the
maximum value.

3.2 A Slightly Deeper Look

There is a three-way tradeoff in the design of mechanisms between
efficiency, revenue, and bidders’ surplus. In Figures 8 and 9 we exhibit
this tradeoff separately for two classes of the hard environments: the
spatial and the spatial fitting. In the figures, points to the northeast
represent higher efficiencies, since revenue percentage plus surplus
percentage equals efficiency percentage. The distribution of points
along the lines of equal efficiency represents the distribution of the
surplus between the seller (revenue) and the buyers (bidders’ surplus).
We chose these tests because they appear to generate the starkest differ-
entiation in performance between the simultaneous and the packaging
mechanisms. Such differentiation allows some insight into the particu-
lar strengths of each mechanism.

21. Net profit is simply Vi(x1i , . . . , xni) 1 O j
bji . Here, bji is the amount paid by i for

item j.
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FIGURE 8. AUSM VS. SIMULTANEOUS (SPATIAL)

3.2.1 Giving the Simultaneous Auction Its Best
Chance. The spatial testbed is probably the ideal example of a situa-
tion that gives the simultaneous ascending-bid auction its best shot at
outperforming the package-bidding auction. It places the interests of
single-item demanders in direct conflict with those of demanders who
wish the entire collection of items. To make that conflict even starker,
the highest-valued demander of the collection is also one of the single-
item demanders. Thus, in situations in which the single-item deman-
ders should win (i.e., when that is the efficient outcome), not only must
they outbid the demander with the highest value for the whole collec-
tion, but also the demander of the whole must be part of the effort to
outbid himself.22

22. This should certainly lead to the exposure of a threshold problem for AUSM, if
one exists. It has been the speculation of some that package bidding creates a situation
in which those bidders who value large packages have an advantage over bidders who
only value single items. The speculation is that when it is efficient for single-item deman-
ders to win, AUSM will let the large package bidders win instead, leading to low efficien-
cies. This is called the threshold problem, because the single-item bidders have to coordi-
nate to jointly overcome the threshold provided by the large package bid. The counter
bias, that the simultaneous mechanism may let single-item bidders win in tests when it
is efficient for large packages to win, is generally not mentioned in these discussions.
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FIGURE 9. AUSM VS. SIMULTANEOUS (SPATIAL FITTING)

In these tests, AUSM tends to generate outcomes that are, relative
to those of the simultaneous mechanism, high in both efficiency and
revenue but low in surplus. The simultaneous ascending-bid auction
does better in generating bidders’ surplus, but does so in many tests
at a serious loss in efficiency. The numbers are straightforward. In 90%
of its tests, AUSM yielded more than 80% efficiency. In only 33% of its
tests did the simultaneous mechanism yield more than 80% efficiency.
On a relative basis, using efficiency as the appropriate measure, the
data seem to reject the charges that AUSM has a threshold problem.
A closer examination, however, reveals some evidence to the contrary.
In 22 of the 35 tests of AUSM in this environment, the 100% efficient
outcome was for the single-item demanders to win. AUSM produced
that outcome only 45% of the time. In the other 13 tests the 100%-
efficient outcome was for the demander of the whole to win. AUSM
produced that outcome 100% of the time. It appears that in this extreme
test for the existence of a threshold problem, there are signs that AUSM
has one but that its effect on efficiency and revenue is low. The numbers
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for the simultaneous mechanism are almost the exact opposite of those
for AUSM. In 17 tests of the simultaneous mechanism in this environ-
ment, the 100%-efficient allocation was for the single-item demanders
to win. The simultaneous mechanism produced that outcome only 75%
of the time.23 In the other 7 tests, the demander of the whole should
win to produce 100% efficiency. The simultaneous mechanism pro-
duced that outcome only once, or 14% of the time.24 Clearly the data
from this extreme testbed highlight the fact that each of the two mecha-
nisms possesses an unmistakable bias. AUSM seems to be biased
slightly in favor of large-package demanders, while the simultaneous
mechanism seems to be biased seriously in favor of single item deman-
ders. Nevertheless, if one is interested in generating highly efficient
allocations, then AUSM clearly dominates in these tests.

Looking at the other data from the spatial tests, we note that in
90% of the tests AUSM produced revenue in excess of 50% of the maxi-
mum possible. In only 20% of its tests did the simultaneous mechanism
yield more than 50% of the maximum possible revenue. With respect
to bidders’ surplus, the simultaneous mechanism yielded over 40% of
the maximum possible surplus in over 50% of its tests, and over 30%
of the maximum surplus in over 70% of its tests. AUSM, on the other
hand, yielded over 40% of the maximum surplus in only 15% of its
tests, and over 30% of the maximum in only 20%. A straightforward
policy observation follows. If the surplus attained is all that is important
to the potential participants in an auction, and if efficiency is allowed
to take a back seat to self-interest, then bidders should be expected to
argue for the simultaneous auction, while the seller should be expected
to argue for the inclusion of package bidding.

3.2.2 Giving AUSM Its Best Chance. The spatial fitting test-
bed is probably the ideal example of a situation that gives the package-
bidding auction its best shot at outperforming the simultaneous ascend-
ing-bid auction. It highlights situations in which the efficient allocations
involve no single-item buyers and no buyers who want the entire collec-
tion. Rather, the efficient allocation is usually one in which two buyers
each buy three of the six items. Also, and as importantly, the second-

23. This seemingly high failure rate of 25%, in situations for which the mechanism
seems particularly suited (compare that with AUSM’s 0% in its ‘‘good’’ environments),
occurs because of the internal conflict faced by the bidder who is the high-value large-
package demander. That bidder must choose at some point during the auction to go for
one unit instead of all three. If the bidder waits too long to withdraw from his pursuit
of three, then a misallocation of the single items can occur and that bidder can actually
face losses. That seems to have happened quite often in these tests.

24. Compare that with AUSM’s 45% in its ‘‘bad’’ environments.



Experiments Testing Multiobject Allocation Mechanisms 661

best allocation (remember, that’s the one that drives prices) also in-
volves two buyers buying three items each but usually in a different
configuration than that of the first-best allocation. So coordination is
the key to success in these testbeds.

Turning to the data, one can see that the conflict between bidder
and seller is no longer as sharp as it was in the spatial tests and, in a
certain sense, can be said to be not there at all. Here, with rare excep-
tions, package bidding leads simultaneously to higher efficiency and
higher revenue and higher bidders’ surplus. The efficiency increase
that occurs by including package bidding apparently creates enough
surplus to allow both sides of the market to be better off. The numbers
are again straightforward. In only two tests did AUSM fail to achieve
100% efficiency, while in only one of its tests did the simultaneous
mechanism exceed 70% efficiency. So much coordination is needed to
find both the best allocation and the next-best allocations that the sin-
gle-price-per-item structure of the simultaneous auction doesn’t have
a chance. In the spatial fitting tests, AUSM yielded bidders’ surplus
less than 20% only twice. The simultaneous mechanism, on the other
hand, managed to yield higher than 20% surplus only once. In fact,
because bidders are exposed as they try to acquire packages in the
simultaneous auction, many bidders actually lose money. In one test,
the losses were so high that there was a negative bidders’ surplus and
only 70% efficiency; that is, bidders paid out more in revenue to the
seller than they would make as owners of the items they bid on and
won. These losses did not, however, yield the highest revenue to the
seller. In most cases that was accomplished by allowing packaging.25

In 90% of its tests, AUSM exceeded 50% of the maximum possible
revenue. In only 20% of its tests did the simultaneous mechanism ex-
ceed 50% of the maximum possible revenue.

3.3 Summary of Our Observations and Their Support

In Section 1, we identified two major design choices that the data might
help provide answers for. These were (1) sequential or simultaneous,
and (2) package bidding or not. We have exhibited a lot of data from
various testbed combinations of mechanisms and environments, many
of which were created to influence those choices. Because the experi-
ments were designed ‘‘on the fly,’’ the data may not be as definitive
as one might wish. On the other hand, we believe there is still enough

25. As a side note, the data also support the claim that allowing package bidding
does not give the package of the whole any particular advantage.
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evidence to allow us to make some observations that will stand up to
further examination.

Observation 1: If the items are homogeneous, then the answer to (1)
is that it doesn’t matter. The answer to (2) in these environments is unknown
but probably unimportant.

The support for this observation comes from the data in Section
3.1.1. In environments with multiple items to be allocated, if those items
are homogeneous and substitutes, then little coordination between buy-
ers is needed and the only role of the mechanism is to sort bidders
with high values from bidders with low values. Both the sequential and
simultaneous mechanisms seem to work very well at finding efficient
allocations in these ‘‘easy’’ environments.26

Observation 2: If the items are heterogeneous, then the answer to (1)
is that simultaneous is better. If the extent of complementarity between items
is small, the answer to (2) is that it probably doesn’t matter.

The support for this observation comes from the data in Section
3.1.2. In environments with multiple items to be allocated, if those items
are heterogeneous, then some coordination among bidders is necessary
to achieve high-value allocations even if there are only low synergy
values. Simultaneous auctions provide a first step towardthis coordina-
tion in a way that sequential auctions are unable to.27Packaging doesn’t
seem to either help or hurt relative to the simultaneous mechanism.

Observation 3: If there are significant complementarities, then the an-
swer to (2) is that package bidding is significantly better.

The support comes from the data in Section 3.1.3. In environments
with heterogeneous goods exhibiting complementarities, significant co-
ordination is required for an auction or allocation mechanism to per-
form well with respect to efficiency or revenue. Sequential auctions
perform poorly. Simultaneity is clearly necessary but not sufficient to
attain high efficiencies. The simultaneous one-price-per-item auction
seems to produce outcomes that are either high in efficiency, revenue,
and losses or low in efficiency, revenue, and losses. Package bidding

26. We do not have any data on the performance of AUSM, the package-bid mecha-
nism, in these simple environments with homogeneity, but we find it plausible that
packaging could actually hurt here by guiding bidders to try to attain allocations that
are inefficient. Of course, it is also plausible that AUSM, like the other mechanisms, will
also perform well in these easy environments.

27. See Milgrom (1995, pp. 14, 15) for a concise discussion of why this might be so.
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seems to help a lot in attaining high efficiency, high revenue, and no
losses.

4. What Next?

In this section we try to point to some of the future research that we
think is vital to the creation of better designs of complex auctions. There
is a major gap between theory, scientific evidence, and practice in the
design of these mechanisms. Until there are some serious break-
throughs in the theory of heterogeneous, multiunit auctions, it is also
likely that experimental evidence will have to suffice.

4.1 Stopping, Activity and Withdrawal Rules

The simplest and most needed research is the testing of various
straightforward variations in existing designs. Among these variations
are withdrawal rules and stopping rules, including the various activity
rules that have been proposed or used. Nothing systematic has yet been
done to provide the research needed to answer questions that came up
in the design of the FCC auction. For example, there are no serious
theoretical discussions about whether withdrawal rules do any good
at all and, if so, what are the better rules.28 Discussions are naive. From
an individual’s standpoint, the possibility of withdrawal allows a bid-
der to be more aggressive,29 to try risky fitting strategies at lower risk,
and (maybe) to avoid losses incurred ‘‘by mistake.’’ From a strategic
point of view (i.e., when the reactions of the other players are also
considered), some of these benefits may disappear. Losses occur for
sure only when prices are high and the end of the auction is near, in
exactly those cases in which no one is left to bail the loser out. However,
it is still possible that the apparent reduction in risk will increase effi-
ciency and revenue at the cost of increased losses. A second strategic
effect is less benign. The lowering of the risk of loss could lead an
opponent to try to drive the price of an item up to force you to give it
up and, more importantly, because of that to release another item at a
loss. This type of strategy can lower both efficiency and revenue. What
will really happen remains to be carefully studied.

With respect to stopping rules, we also have virtually no system-

28. A first step in the direction of providing some scientific evidence about the effect
of withdrawal rules can be found in Porter (1996).

29. It lowers the expected cost of not acquiring a piece of a package in a simultaneous
auction.
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atic data or theory that can provide guidance about what stopping rule
should be used in which situation.30 Stopping and its corollary, the
encouragement of active bidding, remain very much an art both in the
lab and in practice. The FCC chose to allow bidding to continue until
no new bids are entered, over another serious proposal: that bidding
stop item by item when no new bids are entered for that item. Their
choice in turn required that some form of activity rule be designed that
would force participation, since otherwise all bidders would have an
incentive to wait for others to go first.31 On the other hand, in markets
for emissions permits for the Los Angeles basin we have, seemingly
successfully, used a much different stopping rule.32 Those auctions
close at the end of a round if the aggregate value of the standing bids
does not increase by more than 5% over the previous round.33 This
yields a much faster closure to the process and requires no activity
rules other than the very natural and simple one that all high bids are
binding and must be improved on to be displaced. What is not known
with any certainty is whether this faster stopping creates more or less
revenue or more or less efficiency than, say, the FCC rules, and whether
such a finding would depend in any systematic way on the environ-
ment. With the extreme importance of these issues, it is very surprising
that there is virtually no theoretical or experimental research.

4.2 Complexity

4.2.1 Computational and Strategic Complexity. An-
other level of open questions in the design of multiple-unit, heterogene-
ous goods auctions involves issues of complexity in both mechanism
and environment. This is especially important when one begins to antic-
ipate the impact of scaling up the experimental tests to something closer
to the actual application. One of the issues one must face in comparing
mechanisms, as in the question of whether to allow package bidding
or whether to use a continuous or batch process, is how to judge the
computational and strategic complexity of each approach. These con-
cepts lie behind some of the discussions during the FCC design process
but have never been satisfactorily defined and measured.34 For exam-

30. A first step in this direction can be found in Kwasnica et al. (1997).
31. Banks et al. (1989) has some relevant observations on this phenomenon.
32. More details can be found at the World Wide Web address www.ace-mkt.com.
33. There is also a provision for a maximum number of rounds. In the LA emissions

markets that we designed, this number is currently 5.
34. Some initial research has begun in this direction. For a leading example, see

Rothkopf et al. (1995).

http://www.ace-mkt.com.
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ple, batch processing gives all bidders time to think through their next
response and so seemingly simplifies their problems; on the other hand,
because of the sealed-bid nature of each round of batch processing,
bidders have to anticipate their competitors’ responses and never know
for sure what a provisionally winning incremental bid is. As another
example, package bidding provides bidders with a strategically easier
way to coordinate their own bids and minimizes their exposure to
losses; on the other hand, if used in batch mode, package bidding re-
quires the auctioneer to use an optimization algorithm and confronts
bidders with some coordination complexity when collections of small
bids are needed to produce efficiency. There are solutions to many
of these problems, but a complete study of the tradeoffs, including
developing methods to measure the effects of the strategic complexity
on bidders, is long overdue.

4.2.2 Environmental Complexity. Proposed mechanisms
must be studied in more complex environments. Two variations that
are obvious to consider include environments in which bidders have
budget constraints and environments in which there are correlated or
affiliated values across multiple, heterogeneous items. The first of these
is important to study because it appears there were a number of bidding
teams in the FCC auctions who were given a budget by their senior
management and told to do as well as they could within that con-
straint.35 One might expect this to be a common situation in large,
complex auctions. It is our conjecture, and that of several others, that
in an environment with budgets, package bidding is going to yield
better performance than the simultaneous auctions. To the contrary, a
few others have opined that with a good withdrawal rule the simultane-
ous auction will do as well as a packaging auction. The correct answer
awaits further study.

Auctions for single items have been studied in great detail, both
in theory and in experiment, in environments with correlated values.
Evidence of the winner’s curse has been found, and it has been shown
that ascending-bid auctions allow better information aggregation than
sealed-bid auctions. This was one of the compelling reasons behind the
decision by the FCC to use an ascending-bid auction instead of a sealed-
bid auction. One might hope that having multiple heterogeneous items
would not change these results a great deal. But since sequential, simul-
taneous, and package-bidding auctions all provide different informa-

35. There are many reasons why such a constraint might exist, but a leading candidate
would be principal-agent problems.



666 Journal of Economics & Management Strategy

tion to bidders during the auction, it is possible that systematic differ-
ences in performance could appear in environments with correlated
values that would reverse the findings above. Our conjecture is that
this will not happen, but this needs to be studied both theoretically
and experimentally before we can be sure.

4.3 Designs?

Finally, some purely speculative thoughts on what the future will bring
in the design of auctions to price and allocate a large number of multiple
heterogeneous items at one time. Under the rubric of moderate fixes,
we think there are two that are the easiest and most productive. One
would be the development of really good stopping rules. These would
drive bidding activity without using complex eligibility requirements
and activity rules, they would cause convergence to equilibrium rea-
sonably rapidly, and they would not impose a lot of strategic complex-
ity on the bidders. The second development would be user-friendly
package bidding. This would reduce the seeming complexity facing
the bidder while allowing the significant improvements in revenue,
efficiency, and bidder surplus that such bidding creates.36

In the more speculative realm of really new approaches, we sug-
gest one. In Banks et al. (1989) we considered a number of mechanisms
and chose AUSM on the basis of the evidence there. It has proven to
be a flexible, successful mechanism in many applications. But there was
another mechanism we considered, the iterative Vickrey mechanism. In
that design, we tried to capture some of the demand-revealing aspects
of Vickrey’s original mechanisms (see Vickrey, 1961), while introducing
some of the cognitively easier aspects of simple iterative bidding found
in standard English auctions.37We were looking for demand revelation
because we believed that if there were little strategic loss from bidding
one’s true values, then the strategic complexity of simultaneously bid-
ding for multiple items would be significantly reduced and good per-
formance would be more likely. We also believed that with the appro-
priate iterative procedure, bidders would not need to submit bids for
all packages in each round (a possibility that would destroy the imple-

36. We continue to believe that the unsupported claims by some that package bidding
is ‘‘too complex’’ are exaggerated and unfounded. Our experience in the applications of
large auctions with truckers (an 800-item auction for Sears) and with environmental
engineers (the ACE pollution permit market) suggests the contrary.

37. Some of these ideas can be found in Rassenti et al. (1982), but they only consider
a sealed-bid mechanism, which doesn’t appear to do the desired job. Some of these ideas
can be found in Ausubel (1996), but the mechanism there seems extremely complex and
difficult to implement even in a very simple testbed.
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mentability of the mechanism). Because we were unable to provide
appropriate commitment rules,38 the mechanism did not perform as
well as we had hoped. However, we believe there is still an iterative
Vickrey design to be found that will minimize strategic complexity,
allow package bidding, and provide excellent efficiency and revenue
performance. If so its performance could easily surpass that of all of
the mechanisms studied in this paper.

Appendix

A.1 Some Background Methodology on Applied
Mechanism Design

The FCC auction designers’ problem was to create a mechanism to
allocate and price a number of heterogeneous items. The goal, at least
as initially stated by the FCC, was to allocate those items to the highest-
value users.39 The basic problem, common to most mechanism design
efforts, was that the information needed to solve this problem (the
values of the items) was best known, if at all, by the various potential
users and not by the FCC. Further, none of these potential users had
any incentive to precisely reveal their information to the FCC. There
is a standard solution to this problem that has been developed over a
number of years of basic research in economics and other disciplines:
If one can predict the performance of various mechanisms over a range of
possible user values for the items, then one does not need to know the details
of the specific values to achieve one’s goals; one need only select the appropriate
mechanism to achieve the desired outcome.

The idea is simple. A mechanism, such as a particular auction
format, works as follows. Participants bring their own information and
valuations to the auction. The auction is then held, and the participants
use their information to determine how they interact with each other
through the mechanism. The interaction between individual behavior
and the auction rules produces an allocation of the items and payments
for those items. Operating the same auction on a different constellation
of values will generally produce a different allocation and payment
distribution. Operating a different auction format on the same constel-
lation of values across individuals will generally also produce a differ-
ent allocation and payment distribution. We refer to the relationship a

38. These would be rules that require bids to be somewhat binding so as to prevent
cheap-talk uses of the bidding process, which in turn could prevent the auction from
converging.

39. See, e.g., Milgrom (1995, pp. 13–14).
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FIGURE 10.

mechanism creates between the particular constellation of values and
the allocation and payments as the performance of the mechanism.

Consider the simple diagram in Figure 10. E is to be thought of
as a set of possible constellations of values with a single point in E
representing the true valuations. We call elements of E environments.
X is to be thought of as the set of possible allocations of items and
payments for those items that might result. We call elements of X out-
comes. A mechanism’s performance is then a mapping from E to X. So,
for example, mechanism M1 produces outcome x1 if the environment
is e1, while mechanism M2 produces outcome x2 in that same environ-
ment. The policy issue in mechanism design is to determine the stan-
dard of performance that is desired for the mechanism to be chosen.
For example, should the mechanism try to produce an outcome that
maximizes the aggregate value of the allocation? Such a standard will
usually be another mapping from some part of E to X and will look
like P in Figure 10. So the performance standard P asks the outcome
to be something in the set G2 if the true environment is e2 and some-
thing in the set G3 if the environment is e3. If the scientific evidence
can establish the performance of various mechanisms and if the perfor-
mance of at least one of those mechanisms is consistent with the perfor-
mance standard of the decisionmaker over the part of E within which
the decisionmaker thinks the true valuations lie, then the design prob-
lem has been solved. In Figure 10, if the decisionmaker thinks that the
true e is somewhere in the upper half of E, if that decisionmaker has
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the performance standard P in mind, and if M1 produces something
in P(e ) for all of the e in the top half, then even though no one knows the
true constellation of values, the mechanism design problem is solved by
using M1.40

The science of applied mechanism design, then, is focused on pro-
viding the best evidence possible on the performance of mechanisms
in a variety of environments. The policy of applied mechanism design
is focused on using those findings to pick the most appropriate mecha-
nism for the situation. In this paper we concentrate on the science only.

A.2 Possible Problems with Efficiency as a
Performance Measure

It has been correctly pointed out by some that the absolute value of
this measure is not particularly illuminating. For example, even if you
knew that a mechanism produces 95% efficiency on average over a
class of environments, there would still be no basis for you to know
whether this is good or bad. An example easily illustrates this. Suppose
there are two items to allocate, A and B. Further suppose bidder 1 is
to be paid $6 if she gets A, $10 if she gets B, and $20 if she gets both.
Suppose bidder 2 is to be paid $4 if he gets A, $15 if he gets B, and $20
if he gets both. The optimal allocation is that 1 gets A and 2 gets B, for
a total profit (before payments) of $21. If, instead, the actual outcome
were that 1 gets B and 2 gets A, the profit (before payments) would be
$14, for an efficiency of 66%. Now suppose I wanted to make this look
a little better. I could simply add $300 to each possible payoff. This
would not change the incentives to each agent (it is only a lump-sum
payment), but it would yield a significantly better-looking efficiency
measure, (310 ` 304)/(315 ` 306) 4 98.87%. So the absolute number
is of little value. However, comparing values across mechanisms in the
same environments can be informative. For example, if I were to tell

40. Decisionmakers involved in policy should be forewarned. Even with the best
scientific evidence about the performance of mechanisms, arguments about the possible
location of the true state of the world can derail good intentions. If the future participants
are asked to provide advice during the design phase and if these participants know
something about the true e, they may have an incentive to provide arguments intended
to improve their final allocation. So in Figure 10, a potential participant may know that
e is truly in the top half of E. If that participant likes x2 better than x1 and if that participant
knows the policymaker’s performance standard is P, then that participant may argue
strongly that ‘‘e must be in the bottom half.’’ If that argument is successful, then the
decisionmaker will select mechanism M2, since M2(e) is in P(e) for e in the lower half of
E. But then when the mechanism M2 is run in conjunction with the true world, say e1,
the outcome x2 occurs. The participant is better off; the policymaker may not be.
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you that mechanism M1 produced observed efficiencies between 90%
and 96% and that mechanism M2 produced efficiencies between 86%
and 89%, for the same structure of payments, you would be justified
in concluding that M1 outperformed M2 on that class of environments
with respect to attaining efficient allocations.

A.3 Details on the Environments

A.3.1. Easy Environments.
A.3.1.1 Additive Values. The first easy environment examined is one
in which values are additive, i.e., the value function is of the form
Vi(x1i , . . . , xni) 4 O j

Vi(xji) In the experiments, there were six items for
sale to six demanders. Each demander knew that his value and those
of other participants were to be drawn uniformly, with replacement,
from a fixed list of ten value sheets, shown in Table IV. In this environ-
ment, a competitive equilibrium always exists for each item, and its
competitive-equilibrium price is equal to the second-highest value for
that item. For example, if a participant drew sheet 4, his profit before
any payment for item c would be 900 and his gross profit for item a
would be only 100. If he obtained both items a and c he would be paid
a gross profit of 1000. The subjects also knew the distribution of the
possible value draws. That is, they knew Table IV and the process by
which values were assigned to each subject.

A.3.1.2 Decreasing Values. Items in this environment are homogenous,
i.e., Vi(x1, x2, . . . , xn) 4 Vi( O j

xj) with V ¢i( O j
xj) # 0, so that we have a

downward-sloping demand with a competitive equilibrium (CE). One
of the demand conditions we used is given in Figure 11. In this environ-

TABLE IV.

Value-Sheet Space

Item Sheet a b c d e f

1 900 450 400 350 300 250
2 400 600 800 600 400 200
3 800 600 400 200 400 600
4 100 100 900 400 300 200
5 400 800 400 200 0 200
6 900 600 300 200 100 0
7 300 300 300 300 300 900
8 750 250 250 750 400 400
9 400 200 400 600 800 600

10 850 350 350 650 150 150
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FIGURE 11. DECREASING-MARGINAL-VALUE ENVIRONMENT

ment there were six participants and ten units to be allocated. Each
participant had decreasing demands for up to four units.

A.3.1.3 Superadditive Values with Competitive Equilibrium. The items
are homogenous but we have V ¢i( O j

xj) $ 0. In addition, there is a price
that clears the market. An example is given in Figure 12. Thus, while

FIGURE 12. SUPERADDITIVE ENVIRONMENT WITH CE
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there exists a risk of assembling the package of items, a single (CE)
price exists. In the figure, each step represents a participant’s marginal
return function for two units. Thus, there were eight participants in
the experiments.

A.3.2 Moderate Environments
A.3.2.1 Superadditive Values without Competitive Equilibrium. An exam-
ple is given in Figure 13. There are eight participants. In the figure,
each step represents a participant’s marginal return function for the
first three units. The marginal return for more than three units is zero.
Notice that in this environment there is no single price equilibrium. As
soon as bids go over 100, losses must occur. When price is above 100,
bidder 5, for example, might then withdraw his bid and accept any
price above 70. This result occurs because the mechanism does not
allow nonlinear pricing. Thus, either the outcome must result in losses,
or at least one bidder must forgo the pursuit of potentially profitable
opportunities.

In the experiments, subjects were provided with the following
common information about their environment: the number of units
being auctioned, the number of participants, and who had the standing

FIGURE 13. SUPERADDITIVE ENVIRONMENT WITH NO CE
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bid on which items. The subjects did not know the distribution over
which the values were drawn or even if a single price could clear the
market.

A.3.2.2 The Assignment Problem. The environment here is exactly that
described in Olson and Porter (1994). In these experiments we used
the same parameters as in the additive-value environment (see Table
11 for values) with the added restriction that demanders can use one
and only one item to make a profit. In addition, we used the same
common knowledge structure where each demander knew that his
value and those of other participants were to be drawn uniformly, with
replacement, from the fixed list of ten value sheets in Table IV.

A.3.3 Hard Environments. These environments are to pro-
vide boundary cases that test the robustness of mechanisms that do
not allow individuals to package demands. In general they are exten-
sions of the case described above with more constraints and priors over
values provided to participants. We detail the three specific environ-
ments we used below.

A.3.3.1 Spatial Demands. Values for three items called a, b, and c along
with a value for the full package abc were drawn from a common
knowledge distribution as follows:

1. The integer values for the single items are drawn independently
from a triangular distribution with support [0,98] (Fig. 14).

2. The value for the package abc is then determined by adding a num-
ber randomly selected from the interval [0,149] to the highest value
for a, b, or c in step 1.

This parameter set can generate values in which a competitive
equilibrium price for each of the items a, b, and c exists or not.

FIGURE 14.
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A.3.3.2 Spatial Fitting. This environment is one in which individuals
have nonadditive preferences for specific packages of items and must
find how they fit together. There are five participants and six heteroge-
neous items to allocate. The structure of the problem is as follows:

1. The single-item packages called a, b, c, d, e, and f have their integer
values drawn independently from the uniform distribution with
support [0,10].

2. The two-item packages $ a,b}, $ a,c}, . . ., $ e,f} have their integer val-
ues drawn independently from the uniform distribution with sup-
port [20,40].

3. The three-item packages $ a,b,c}, . . ., $ d,e,f} have their integer values
drawn independently from the uniform distribution with support
[110,140].

4. A single value is given for the six-item package $ a,b,c,d,e,f} drawn
from [140,180].

A total of 25 unique packages from the total possible generated
from steps 1–4 above were given to participants. The main point to
note is that two three-item packages clearly form the largest total value.
However, this optimal package configuration is likely to be overlapped
by many other competing packages. The task of the mechanism is to
guide the owners of the optimal packages to find each other.
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